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ON SURROGATE DUALITY FOR ROBUST
SEMI-INFINITE OPTIMIZATION PROBLEM

Gue Myung Lee* and Jae Hyoung Lee**

Abstract. A semi-infinite optimization problem involving a quasi-
convex objective function and infinitely many convex constraint
functions with data uncertainty is considered. A surrogate duality
theorem for the semi-infinite optimization problem is given under
a closed and convex cone constraint qualification.

1. Introduction

Optimization problems in the face of data uncertainty have been
treated by the worst case approach(the robust approach) or the sto-
chastic approach. The worst case approach for optimization problems,
which has emerged as a powerful deterministic approach for studying
optimization problems with data uncertainty, associates an uncertain
optimization problem with its robust counterpart. Many researchers
[1, 6, 7, 12] have investigated duality theory for linear or convex pro-
gramming problems under uncertainty with the worst case approach.

On the other hand, recently, many authors [3, 4, 8, 9, 10, 11, 12]
investigated surrogate duality for quasiconvex programming. Surrogate
duality is used in not only quasi-convex programming but also integer
programming and the knapsack problem [2, 3, 4, 8, 9, 10]. In particualr,
Suzuki, Kuroiwa and Lee [12] proved a surrogate duality theorem for an
optimization problem involving a quasi-convex objective function and
finitely many convex constraint functions with data uncertainty, and a
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similar one for a semi-definite optimization problem involving a quasi-
convex objective function and a constraint set defined by a linear matrix
inequality with data uncertainty.

In this brief note, we present a surrogate duality theorem for a semi-
infinite optimization problem involving a quasi-convex objective function
and infinitely many convex constraint functions with data uncertainty.

Consider the following semi-infinite optimization problem in the ab-
sence of data uncertainty

(SIP) min f(x)
s.t. gt(x) ≤ 0, ∀t ∈ T

where f, gt : Rn → R, t ∈ T , are functions and T is an infinite index set.
The semi-infinite optimization problem (SIP) in the face of data un-

certainty in the constraints can be captured by the problem

(USIP) min f(x)
s.t. gt(x, vt) ≤ 0, ∀t ∈ T,

where gt : Rn × Rq → R, gt(·, vt) is convex for all t ∈ T and ut ∈ Rq is
an uncertain parameter which belongs to the set Ut ⊂ Rq, t ∈ T .

The uncertainty set-valued mapping V : T → 2R
q

is defined as V(t) :=
Vt for all t ∈ T . We represent by vt ∈ Vt an element of an uncertainty
set Vt and v ∈ V means that v is a selection of V, i.e., V : T → Rq and
vt ∈ Vt for all t ∈ T .

The robust counterpart (the worst case) of (USIP):

(RSIP) min f(x)
s.t. gt(x, vt) ≤ 0, ∀vt ∈ Vt, ∀t ∈ T

We denote by R(T )
+ the set of mapping λ : T → R+ (also denoted by

(λt)t∈T ) such that λt = 0 except for finitely many indexes). The robust
feasible set F is defined by

F := {x ∈ Rn : gt(x, vt) ≤ 0, ∀t ∈ T, ∀vt ∈ Vt}.
The paper is organized as follows. In Section 2, we introduce some

preliminaries. In Section 3, we give a surrogate duality theorem for the
semi-infinite optimization problem with data uncertainty.

2. Preliminaries

Let 〈v, x〉 denote the inner product of two vectors v and x in the
n-dimensional Euclidean space Rn. Given a set A ⊂ Rn, we denote the
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closure of A and the convex hull by A by clA and coA, respectively. The
indicator function δA is defined by

δA(x) :=
{

0 if x ∈ A,
∞ otherwise.

Let f : Rn → R be a function, where R = [−∞,∞]. Here, f is said to
be proper if for all x ∈ Rn, f(x) > −∞ and there exists x0 ∈ Rn such
that f(x0) ∈ R.

We denote the domain of f by domf , that is, domf = {x ∈ Rn |
f(x) < ∞}. The epigraph of f , epif , is defined as epif = {(x, r) ∈
Rn × R | f(x) ≤ r}, and f is said to be convex if epif is convex.
In addition, the Fenchel conjugate of f , f∗ : Rn → R, is defined as
f∗(u) = supx∈domf{〈u, x〉 − f(x)}.

Recall that f is said to be quasiconvex if for all x1, x2 ∈ Rn and
λ ∈ (0, 1), f((1 − λ)x1 + λx2) ≤ max{f(x1), f(x2)}. Define level sets
of f with respect to a binary relation ¦ on R as L(f, ¦, β) = {x ∈ Rn |
f(x) ¦ β} for any β ∈ R. Then, f is quasiconvex if and only if for
any β ∈ R, L(f,≤, β) is a convex set, or equivalently, for any β ∈ R,
L(f, <, β) is a convex set. Any convex function is quasiconvex, but the
opposite is not true.

Lemma 2.1. [6] Let gi : Rn → R ∪ {+∞}, i ∈ I(where I is an
arbitrary index set), be a proper lower semicontinuous convex function.
Suppose that there exists x0 ∈ Rn such that supi∈I gi(x0) < +∞. Then

epi(sup
i∈I

gi)∗ = cl (co
⋃

i∈I

epi g∗i ).

3. Surrogate duality

In the following theorem, under a constraint qualification, we prove
the surrogate duality theorem for the semi-infinite optimization problem
with data uncertainty. Let f : Rn → R be an upper semicontinuous
quasiconvex function with domf ∩ F 6= ∅, and Let gt be functions from
Rn × Rq to R such that for each t ∈ T and vt ∈ Vt, gt(·, vt) is a convex
function.

Theorem 3.1. Assume that the cone,⋃

(v,λ)∈V×R(T )
+

epi(
∑

t∈T

λtgt(·, vt))∗

is closed and convex. Then we have
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inf{f(x)|gt(x, vt) ≤ 0, ∀vt ∈ Vt, ∀t ∈ T}
= max

(v,λ)∈V×R(T )
+

inf{f(x)|
∑

t∈T

λtgt(x, vt) ≤ 0}.

Proof. Let m = infx∈F f(x). Since F ⊂ {f(x)|∑t∈T λtgt(x, vt) ≤ 0}
for any (v, λ) ∈ V × R(T )

+ , we have, for any (v, λ) ∈ V × R(T )
+ ,

inf{f(x)|
∑

t∈T

λtgt(x, vt) ≤ 0} ≤ m.

If m = −∞, then the conclusion holds trivially. So, assume that m
is finite.

If L(f, <, m) is empty, then putting λ = 0 and taking any v ∈ V,
m = {f(x)|∑t∈T λtgt(x, vt) ≤ 0} and hence the conclusion holds.

Suppose that L(f,<, m) is not empty. Then L(f,<, m) ∩ F = ∅,
L(f, <, m) is a nonempty open convex set, and F is closed and convex.
So, by a separation theorem, there exist a nonzero x∗ ∈ Rn and α ∈ R,
such that for all x ∈ F and y ∈ L(f, <,m),

(3.1) 〈x∗, x〉 ≤ α < 〈x∗, y〉
Since 〈x∗, x〉 ≤ α for any x ∈ F, (x∗, α) ∈ epiδ∗F . By Lemma 2.1,

epiδ∗F = epi( sup
v∈V
λ∈R(T )

+

∑

t∈T

λtgt(·, vt))∗ = cl co(
⋃

(v,λ)∈V×R(T )
+

epi(
∑

t∈T

λtgt(·, vt))∗).

By assumption,

epiδ∗F =
⋃

(v,λ)∈V×R(T )
+

epi(
∑

t∈T

λtgt(·, vt))∗.

Thus
(x∗, α) ∈

⋃

(v,λ)∈V×R(T )
+

epi(
∑

t∈T

λtgt(·, vt))∗.

Hence, there exist λ̄ ∈ R(T )
+ and v̄ ∈ V such that

(x∗, α) ∈ epi(
∑

t∈T

λ̄tgt(·, v̄t))∗.

So, (
∑

t∈T λ̄tgt(·, v̄t))∗(x∗) ≤ α, that is, 〈x∗, x〉 − ∑
t∈T λ̄tgt(x, v̄t) ≤ α

for any x ∈ Rn. Hence, for any x ∈ {x ∈ Rn | ∑
t∈T λ̄tgt(x, v̄t) ≤ 0},

〈x∗, x〉 ≤ α. Thus, from (3.1), for any x ∈ {x ∈ Rn|∑t∈T λ̄tgt(x, v̄t) ≤
0}, x 6∈ L(f, <, m). So, for any x ∈ {x ∈ Rn | ∑t∈T λtgt(x, vt) ≤ 0}, that
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is, inf{f(x)|∑t∈T λ̄tgt(x, v̄t) ≤ 0} ≥ m. Since inf{f(x)|∑t∈T λ̄tgt(x, v̄t) ≤
0} ≤ m, we have

inf{f(x) |
∑

t∈T

λ̄tgt(x, v̄t) ≤ 0} = m.

So, the conclusion holds.

Remark 3.2. The assumption in Theorem 3.1 can be called a closed
and convex cone constraint qualification. This constraint qualification is
a semi-infinite and robust version of the one in [5], and the semi-infinite
version of the one in [6].

Corollary 3.3. Assume that for each x ∈ Rn and each t ∈ T ,
gt(x, ·) is a concave function and there exists x0 ∈ Rn such that for all
t ∈ T and all vt ∈ Vt, gt(x0, vt) < 0. Then we have

inf{f(x)|gt(x, vt) ≤ 0, ∀vt ∈ Vt, ∀t ∈ T}
= max

(v,λ)∈V×R(T )
+

inf{f(x)|
∑

t∈T

λtgt(x, vt) ≤ 0}.

Proof. Following the proof approaches of Proposition 2.3 and Propo-
sition 3.2 in [6], we can check that

⋃

(v,λ)∈V×R(T )
+

epi
(∑

t∈T

λtgt(·, vt)
)∗

is closed and convex. Thus, from Theorem 3.1, the conclusion holds.
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