JOURNAL OF THE

CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 27, No. 3, August 2014
http://dx.doi.org/10.14403/jcms.2014.27.3.433

ON SURROGATE DUALITY FOR ROBUST
SEMI-INFINITE OPTIMIZATION PROBLEM

GUE MYUNG LEE* AND JAE HYOUNG LEE**

ABSTRACT. A semi-infinite optimization problem involving a quasi-
convex objective function and infinitely many convex constraint
functions with data uncertainty is considered. A surrogate duality
theorem for the semi-infinite optimization problem is given under
a closed and convex cone constraint qualification.

1. Introduction

Optimization problems in the face of data uncertainty have been
treated by the worst case approach(the robust approach) or the sto-
chastic approach. The worst case approach for optimization problems,
which has emerged as a powerful deterministic approach for studying
optimization problems with data uncertainty, associates an uncertain
optimization problem with its robust counterpart. Many researchers
[1, 6, 7, 12] have investigated duality theory for linear or convex pro-
gramming problems under uncertainty with the worst case approach.

On the other hand, recently, many authors [3, 4, 8, 9, 10, 11, 12]
investigated surrogate duality for quasiconvex programming. Surrogate
duality is used in not only quasi-convex programming but also integer
programming and the knapsack problem [2, 3, 4, 8, 9, 10]. In particualr,
Suzuki, Kuroiwa and Lee [12] proved a surrogate duality theorem for an
optimization problem involving a quasi-convex objective function and
finitely many convex constraint functions with data uncertainty, and a
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similar one for a semi-definite optimization problem involving a quasi-
convex objective function and a constraint set defined by a linear matrix
inequality with data uncertainty.

In this brief note, we present a surrogate duality theorem for a semi-
infinite optimization problem involving a quasi-convex objective function
and infinitely many convex constraint functions with data uncertainty.

Consider the following semi-infinite optimization problem in the ab-
sence of data uncertainty

(SIP) min f(z)
st. gi(x) <0, VteT
where f,g; : R” — R, t € T, are functions and 7T is an infinite index set.
The semi-infinite optimization problem (SIP) in the face of data un-
certainty in the constraints can be captured by the problem
(USIP) min f(z)
st. gi(x,v) <0, VEET,
where g; : R" x R? — R, ¢4(+,v¢) is convex for all t € T and u; € R? is
an uncertain parameter which belongs to the set Uy C R, t € T.
The uncertainty set-valued mapping V : T — 2R is defined as V(t) :=
V, for all t € T. We represent by v; € V; an element of an uncertainty
set V; and v € V means that v is a selection of V, i.e., V : T — R? and
vy € ViforallteT.
The robust counterpart (the worst case) of (USIP):
(RSIP) min f(z)
st. gi(x,v) <0, Yo eV, VEeT

We denote by ]RSFT) the set of mapping A : T'— R (also denoted by

(At)ter) such that A\; = 0 except for finitely many indexes). The robust
feasible set F' is defined by

F:={zeR": g(x,v0) <0, Vt €T, Vo, € V;}.

The paper is organized as follows. In Section 2, we introduce some
preliminaries. In Section 3, we give a surrogate duality theorem for the
semi-infinite optimization problem with data uncertainty.

2. Preliminaries

Let (v,z) denote the inner product of two vectors v and z in the
n-dimensional Euclidean space R™. Given a set A C R", we denote the
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closure of A and the convex hull by A by clA and coA, respectively. The
indicator function ¢4 is defined by

5a(2) ::{0 if x € A,

oo otherwise.
Let f : R® — R be a function, where R = [~00, 00]. Here, f is said to
be proper if for all z € R", f(z) > —oo and there exists zp € R™ such
that f(zo) € R.

We denote the domain of f by domf, that is, domf = {x € R" |
f(x) < oo}. The epigraph of f, epif, is defined as epif = {(x,r) €
R x R | f(z) < r}, and f is said to be convex if epif is convex.
In addition, the Fenchel conjugate of f, f* : R" — R, is defined as
1 (1) = WP gom (1, 7) — F(2)}.

Recall that f is said to be quasiconvex if for all x1, o € R™ and
A€ (0,1), f((1 = Nx1 + Aza) < max{f(z1), f(xz2)}. Define level sets
of f with respect to a binary relation ¢ on R as L(f,¢,3) = {x € R" |
f(z) o B} for any § € R. Then, f is quasiconvex if and only if for
any § € R, L(f,<,[) is a convex set, or equivalently, for any § € R,
L(f,<,p) is a convex set. Any convex function is quasiconvex, but the
opposite is not true.

LEMMA 2.1. [6] Let g; : R — RU {400}, i € I(where I is an
arbitrary index set), be a proper lower semicontinuous conver function.
Suppose that there exists xog € R™ such that sup;c; gi(zo) < +00. Then

epi(sup g;)* = cl(co U epig;).
iel icl

3. Surrogate duality

In the following theorem, under a constraint qualification, we prove
the surrogate duality theorem for the semi-infinite optimization problem
with data uncertainty. Let f : R® — R be an upper semicontinuous
quasiconvex function with domf N F # (), and Let g; be functions from
R™ x R? to R such that for each t € T and vy € V4, gi(+, vy) is a convex
function.

THEOREM 3.1. Assume that the cone,
U epid Mgil o)
(v,A)eVxR{") teT

is closed and convex. Then we have
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inf{f(z)|gt(z,v¢) <0, Vo € V4, Vt € T}
= max inf{f(x)| Z)\tgt(:x,vt) <0}.

(’U,)\)EVX]R+ teT
Proof. Let m = inf,cp f(x). Since F' C {f(x)| Y ;cr Aegi(z,v¢) < 0}
for any (v,\) € V x Rf), we have, for any (v,\) € V X R

+
inf{f(2)] > Aege(a,v;) <0} <m.
teT

If m = —o0, then the conclusion holds trivially. So, assume that m
is finite.

If L(f,<,m) is empty, then putting A\ = 0 and taking any v € V,
m = {f(x)] > cr Age(z,v:) <0} and hence the conclusion holds.

Suppose that L(f,<,m) is not empty. Then L(f,<,m)NF = 0,
L(f,<,m) is a nonempty open convex set, and F' is closed and convex.
So, by a separation theorem, there exist a nonzero z* € R" and « € R,
such that for all z € F and y € L(f, <,m),

(3.1) (z",2) < a < (z*,y)
Since (z*,z) < o for any « € F, (¥, ) € epid},. By Lemma 2.1,

epidx = epi( sup Z Aege (-5 ve))" = cleo( U epi(z Atge (v, ve))).

veY
(1) t€T v A)eVxRT) teT
)\ER+ ( ) +

By assumption,

epidy = U epi(z Aege(-,ve))"
(v, N VxR teT
Thus
(z% a) € U epi(z Aege (s ve))"
(v,A) VxR teT
Hence, there exist A € Rf) and v € V such that
(%, a) € epi(z Aege (-, 0¢))"
teT
So, (X ier tht(-,ﬁt))*(w*) < «, that is, (z*,z) — Ztertgt(x,ﬁt) < «
for any = € R". Hence, for any z € {z € R" | >, .1 Mge(z, ;) < 0},
(z*,2) < a. Thus, from (3.1), for any z € {z € R"[ >, .p Mge(x, ) <
0}, z & L(f,<,m). So, forany z € {x € R"™ | >, .1 Aege(x,v¢) < 0}, that
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is, inf{ f(2)| > Aege(z,0¢) < 0} > m. Since inf{ f(2)| > ,cr Mge(z, 0p) <
0} < m, we have

inf{f(z) | > Aege(w,0) <0} = m.

teT
So, the conclusion holds. O

REMARK 3.2. The assumption in Theorem 3.1 can be called a closed
and convex cone constraint qualification. This constraint qualification is
a semi-infinite and robust version of the one in [5], and the semi-infinite
version of the one in [6].

COROLLARY 3.3. Assume that for each x € R"™ and each t € T,
g+(x,-) is a concave function and there exists xo € R™ such that for all
t € T and all v € Vy, gi(xo,v:) < 0. Then we have

inf{f(z)|gi(z,v;) <0, Vo, € Vy, Vt € T'}
= max >imf{f(ac)| Z)\tgt(x,vt) < 0}.

T
(U,)\)EVXR+ teT

Proof. Following the proof approaches of Proposition 2.3 and Propo-
sition 3.2 in [6], we can check that

U eni( D v ’Ut))*

(T) teT
(v,A\)EVXRY

is closed and convex. Thus, from Theorem 3.1, the conclusion holds. [
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